Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
1.
Transl Psychiatry ; 14(1): 190, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622130

RESUMO

Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.


Assuntos
Estimulação Encefálica Profunda , Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Ratos , Animais , Núcleo Dorsal da Rafe , Estimulação Encefálica Profunda/métodos , Comportamento de Procura de Droga/fisiologia , Transtornos Relacionados ao Uso de Substâncias/terapia
2.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514181

RESUMO

The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.


Assuntos
Cocaína , Comportamento de Procura de Droga , Oxidiazóis , Serotonina , Animais , Masculino , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Ratos , Serotonina/metabolismo , Feminino , Cocaína/administração & dosagem , Cocaína/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Piperazinas/farmacologia , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Autoadministração , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo
3.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374364

RESUMO

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga , Hipocampo , Locus Cerúleo , Autoadministração , Animais , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Feminino , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Morfina/farmacologia , Morfina/administração & dosagem , Ratos Sprague-Dawley , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia
4.
Transl Psychiatry ; 14(1): 107, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388464

RESUMO

Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Humanos , Área Tegmentar Ventral , Motivação , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Pai , Autoadministração/métodos , Comportamento de Procura de Droga/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
5.
Drug Alcohol Depend ; 255: 111077, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228055

RESUMO

BACKGROUND: Several preclinical studies have demonstrated that environmental enrichment (EE) during abstinence reduces drug seeking for psychostimulant and opioid drugs. Drug seeking is dependent on activity within the dorsomedial prefrontal cortex, and enrichment has been able to reduce drug seeking-associated increases in c-Fos in this region. In this study, we tested the hypothesis that EE during abstinence from oxycodone self-administration would reduce drug seeking and c-Fos immunoreactivity within the prefrontal cortex in a cell-type specific manner. METHODS: Male rats self-administered oxycodone in two-hours sessions for three weeks, then underwent an initial drug seeking test under extinction conditions after one week of forced abstinence. Following this test, rats received either EE or remained individually housed in their home cage, then a second drug seeking test, with tissue collection immediately afterward. RESULTS: Compared to rats in standard housing, environmentally enriched rats had lower oxycodone seeking. In the prelimbic and infralimbic prefrontal cortices, the number of c-Fos+ cells was reduced, and this reduction was predominantly in inhibitory cells neurons, as evidenced by a reduction in the proportion of c-Fos+ cells in GAD+, but not CamKII+ cells. There was also a robust positive relationship between the number of c-Fos+ cells and persistence of oxycodone seeking in both the PrL and IL. CONCLUSIONS: These findings further support the effectiveness of enriched environments to reduce reactivity to drug-associated stimuli and contexts and provide a potential mechanism by which this occurs.


Assuntos
Oxicodona , Córtex Pré-Frontal , Ratos , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Analgésicos Opioides , Neurônios/metabolismo , Autoadministração , Comportamento de Procura de Droga/fisiologia
6.
Brain Res ; 1818: 148528, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567548

RESUMO

Methamphetamine (meth) is an addictive psychostimulant and there are no FDA-approved treatment options for patients suffering from meth use disorders. In addition to being addictive, meth is also neurotoxic and chronic administration results in degeneration of substantia nigra pars compacta (SNc) dopamine and locus coeruleus (LC) norepinephrine neurons in mice. Optimal treatment strategies for meth use disorders would attenuate maladaptive meth-seeking behavior as well as provide neuroprotection. The L-type calcium channel inhibitor isradipine and the monoamine oxidase (MAO) inhibitor rasagiline both prevent chronic meth-induced SNc and LC degeneration but effects on meth-seeking are unknown. To test whether these clinically available compounds can mitigate meth-seeking, mice were implanted with chronic indwelling jugular vein catheters and allowed to self-administer meth (0.1 mg/kg/infusion) for 10 consecutive days (2-hrs/day) on a fixed ratio (FR) 1 schedule of reinforcement with meth infusions paired to a cue light. One day after the last self-administration session mice were tested for cue-associated meth-seeking behavior wherein the meth-associated cue light was contingently presented but meth reinforcement withheld. Isradipine (3 mg/kg) attenuated cue-associated meth-seeking in both male and female mice. In contrast, rasagiline (1 mg/kg) had no effect on seeking in either sex. These results suggest that isradipine may have the potential to serve as a dual-purpose pharmacotherapy for meth use disorders by attenuating seeking behavior and providing neuroprotection.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos , Masculino , Feminino , Animais , Metanfetamina/farmacologia , Isradipino/farmacologia , Canais de Cálcio Tipo L , Sinais (Psicologia) , Autoadministração , Comportamento de Procura de Droga/fisiologia
7.
Transl Psychiatry ; 13(1): 117, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031193

RESUMO

Recovery from opioid use disorder (OUD) and maintenance of abstinence from opioid use is hampered by perseverant drug cravings that may persist for months after cessation of drug use. Drug cravings can intensify during the abstinence period, a phenomenon referred to as the 'incubation of craving' that has been well-described in preclinical studies. We previously reported that animals that self-administered heroin at a dosage of 0.075 mg/kg/infusion (HH) paired with discrete drug cues displayed robust incubation of heroin craving behavior after 21 days (D) of forced abstinence, an effect that was not observed with a lower dosage (0.03 mg/kg/infusion; HL). Here, we sought to elucidate molecular mechanisms underlying long-term heroin seeking behavior by profiling microRNA (miRNA) pathways in the orbitofrontal cortex (OFC), a brain region that modulates incubation of heroin seeking. miRNAs are small noncoding RNAs with long half-lives that have emerged as critical regulators of drug seeking behavior but their expression in the OFC has not been examined in any drug exposure paradigm. We employed next generation sequencing to detect OFC miRNAs differentially expressed after 21D of forced abstinence between HH and HL animals, and proteomics analysis to elucidate miRNA-dependent translational neuroadaptations. We identified 55 OFC miRNAs associated with incubation of heroin craving, including miR-485-5p, which was significantly downregulated following 21D forced abstinence in HH but not HL animals. We bidirectionally manipulated miR-485-5p in the OFC to demonstrate that miR-485-5p can regulate long-lasting heroin seeking behavior after extended forced abstinence. Proteomics analysis identified 45 proteins selectively regulated in the OFC of HH but not HL animals that underwent 21D forced abstinence, of which 7 were putative miR-485-5p target genes. Thus, the miR-485-5p pathway is dysregulated in animals with a phenotype of persistent heroin craving behavior and OFC miR-485-5p pathways may function to support long-lasting heroin seeking.


Assuntos
MicroRNAs , Transtornos Relacionados ao Uso de Opioides , Ratos , Masculino , Animais , Heroína , Ratos Sprague-Dawley , MicroRNAs/genética , Córtex Pré-Frontal , Fissura/fisiologia , Comportamento de Procura de Droga/fisiologia , Autoadministração , Sinais (Psicologia)
8.
Drug Alcohol Depend ; 246: 109858, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028106

RESUMO

Cues associated with alcohol use can readily enhance self-reported cravings for alcohol, which increases the likelihood of reusing alcohol. Understanding the neuronal mechanisms involved in alcohol-seeking behavior is important for developing strategies to treat alcohol use disorder. In all experiments, adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a CS0, a neutral stimulus. The data indicated that presentation of an excitatory conditioned cue (CS+) can enhance EtOH- seeking while the CS- can inhibit EtOH-seeking under multiple test conditions. Presentation of the CS+ activates a subpopulation of dopamine neurons within the interfascicular nucleus of the posterior ventral tegmental area (posterior VTA) and basolateral amygdala (BLA). Pharmacological inactivation of the BLA with GABA agonists inhibits the ability of the CS+ to enhance EtOH-seeking but does not alter context-induced EtOH-seeking or the ability of the CS- to inhibit EtOH-seeking. Presentation of the conditioned odor cues in a non-drug-paired environment indicated that presentation of the CS+ increased dopamine levels in the BLA. In contrast, presentation of the CS- decreased both glutamate and dopamine levels in the BLA. Further analysis revealed that presentation of a CS+ EtOH-associated conditioned cue activates GABA interneurons but not glutamate projection neurons. Overall, the data indicate that excitatory and inhibitory conditioned cues can contrarily alter EtOH-seeking behaviors and that different neurocircuitries are mediating these distinct cues in critical brain regions. Pharmacotherapeutics for craving should inhibit the CS+ and enhance the CS- neurocircuits.


Assuntos
Sinais (Psicologia) , Neuroquímica , Ratos , Feminino , Animais , Dopamina , Comportamento de Procura de Droga/fisiologia , Etanol/farmacologia , Autoadministração , Condicionamento Operante/fisiologia , Extinção Psicológica
9.
Int J Neuropsychopharmacol ; 26(5): 359-371, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36951642

RESUMO

BACKGROUND: Opioid use disorder (OUD) is a chronic relapsing psychiatric disorder with an enormous socioeconomic burden. Opioid overdose deaths have reached an epidemic level, especially for fentanyl. One of the biggest challenges to treat OUD is the relapse to drug seeking after prolonged abstinence. Abnormalities in insulin-like growth factor-1 (IGF-1) have been reported in various neurological and psychiatric disorders, including OUD. However, whether IGF-1 and its downstream signaling pathways are associated with relapse to fentanyl seeking remains unclear. METHODS: Mice were subjected to daily 2-hour fentanyl (10 µg/mL, 27 µL/infusion) oral self-administration training for 14 days, followed by 14-day fentanyl cessation. Expression levels of IGF-1/IGF-1 receptor and downstream signaling pathways in the dorsomedial prefrontal cortex (dmPFC) were detected. Then, IGF-1 was bilaterally microinjected into the dmPFC from fentanyl cessation day 9 to day 13. Fentanyl-seeking behavior and excitatory synaptic transmission of pyramidal neurons in PFC were evaluated. RESULTS: We found that 14-day cessation from fentanyl oral self-administration caused significant downregulation of IGF-1 and IGF-1 receptor phosphorylation in the dmPFC. These changes were accompanied by inhibition of the downstream Akt and S6 signaling pathway. In addition, local administration of IGF-1 in the dmPFC attenuated context-induced fentanyl-seeking behavior. Furthermore, electrophysiology and immunohistochemistry analyses showed that IGF-1 blocked fentanyl-induced reduction of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors-mediated excitatory synaptic transmission as well as synaptic expression of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and N-methyl-D-aspartate receptor subunits. CONCLUSIONS: These results suggest that IGF-1 in the PFC plays a pivotal role in regulating fentanyl seeking after prolonged cessation from fentanyl oral self-administration.


Assuntos
Fentanila , Transtornos Relacionados ao Uso de Opioides , Ratos , Camundongos , Animais , Fentanila/farmacologia , Fentanila/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Microinjeções , Córtex Pré-Frontal/metabolismo , Comportamento de Procura de Droga/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Recidiva
10.
J Neurosci ; 43(14): 2597-2614, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898838

RESUMO

We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AI→Pir and PL→Pir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AI→Pir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PL→Pir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AI→Pir and PL→Pir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AI→Pir and PL→Pir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.


Assuntos
Fentanila , Córtex Piriforme , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Preferências Alimentares , Alimentos , Autoadministração , Extinção Psicológica , Comportamento de Procura de Droga/fisiologia
11.
Proc Natl Acad Sci U S A ; 120(7): e2210953120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745812

RESUMO

Opioid use produces enduring associations between drug reinforcement/euphoria and discreet or diffuse cues in the drug-taking environment. These powerful associations can trigger relapse in individuals recovering from opioid use disorder (OUD). Here, we sought to determine whether the epigenetic enzyme, histone deacetylase 5 (HDAC5), regulates relapse-associated behavior in an animal model of OUD. We examined the effects of nucleus accumbens (NAc) HDAC5 on both heroin- and sucrose-seeking behaviors using operant self-administration paradigms. We utilized cre-dependent viral-mediated approaches to investigate the cell-type-specific effects of HDAC5 on heroin-seeking behavior, gene expression, and medium spiny neuron (MSN) cell and synaptic physiology. We found that NAc HDAC5 functions during the acquisition phase of heroin self-administration to limit future relapse-associated behavior. Moreover, overexpressing HDAC5 in the NAc suppressed context-associated and reinstated heroin-seeking behaviors, but it did not alter sucrose seeking. We also found that HDAC5 functions within dopamine D1 receptor-expressing MSNs to suppress cue-induced heroin seeking, and within dopamine D2 receptor-expressing MSNs to suppress drug-primed heroin seeking. Assessing cell-type-specific transcriptomics, we found that HDAC5 reduced expression of multiple ion transport genes in both D1- and D2-MSNs. Consistent with this observation, HDAC5 also produced firing rate depression in both MSN classes. These findings revealed roles for HDAC5 during active heroin use in both D1- and D2-MSNs to limit distinct triggers of drug-seeking behavior. Together, our results suggest that HDAC5 might limit relapse vulnerability through regulation of ion channel gene expression and suppression of MSN firing rates during active heroin use.


Assuntos
Cocaína , Heroína , Camundongos , Animais , Camundongos Transgênicos , Heroína/metabolismo , Heroína/farmacologia , Cocaína/farmacologia , Reforço Psicológico , Comportamento de Procura de Droga/fisiologia , Epigênese Genética , Núcleo Accumbens/fisiologia , Autoadministração
12.
J Neurosci ; 43(4): 647-655, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639895

RESUMO

Distress tolerance (DT) is defined as the ability to persist in challenging goal-directed behavior in the face of stress, and individuals with low DT exhibit heightened drug-seeking behavior. However, no preclinical studies have examined the neurobiology underlying this phenomenon. To assess this, in vivo electrophysiology was used in Long Evans male and female rats during a DT task to record neural activity in the prelimbic cortex (PrL), a brain region implicated in drug-seeking. Rats were first assessed for DT, defined as the amount of time elapsed before rats quit seeking reward in an increasingly difficult operant task. Subsequently, rats underwent 2 weeks of self-administration for either water/saline or cocaine for 6 h/day. Animals then began a 1 month period of experimenter-imposed abstinence to induce heightened drug-seeking behavior. On day 28 of abstinence, DT and neural activity were reassessed; and on day 30, cocaine-seeking behavior was examined under extinction. Males had significantly higher DT than females and exhibited significantly more phasic PrL activity during the DT task. Furthermore, in male rats with a history of cocaine, PrL activity shifted to track DT; and this change in activity significantly correlated with the change in DT. Additionally, male (but not female) rats with low DT after 28 d of abstinence had significantly heightened drug-seeking behavior. Finally, PrL activity during the DT task predicted cocaine-seeking behavior. Collectively, these data demonstrate an important role for the PrL in DT in males, and link this neural activity and behavior to drug-seeking, particularly in males.SIGNIFICANCE STATEMENT Distress tolerance (DT) is defined as the ability to persist in challenging goal-directed behavior in the face of stress, and individuals with low DT exhibit heightened drug-seeking. Here, we investigated the role of the prelimbic cortex (PrL) in DT and its relationship to cocaine-seeking in male and female rats. We found that males had significantly higher DT than females and exhibited significantly more PrL activity during the DT task. Furthermore, male (but not female) rats with low DT after 28 d of abstinence had significantly heightened drug-seeking behavior. Finally, PrL activity during the DT task predicted cocaine-seeking. These data demonstrate an important role for the PrL in DT and link this neural activity and behavior to drug-seeking in males.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Feminino , Ratos , Masculino , Animais , Cocaína/farmacologia , Ratos Sprague-Dawley , Ratos Long-Evans , Córtex Cerebral , Comportamento de Procura de Droga/fisiologia , Autoadministração , Córtex Pré-Frontal/fisiologia , Extinção Psicológica
13.
Mol Psychiatry ; 28(1): 448-462, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481931

RESUMO

The incubation phenomenon, cue-induced drug craving progressively increasing over prolonged withdrawal, accounts for persistent relapse, leading to a dilemma in the treatment of cocaine addiction. The role of neuronal ensembles activated by initial cocaine experience in the incubation phenomenon was unclear. In this study, with cocaine self-administration (SA) models, we found that neuronal ensembles in the nucleus accumbens shell (NAcSh) showed increasing activation induced by cue-induced drug-seeking after 30-day withdrawal. Inhibition or activation of NAcSh cocaine-ensembles suppressed or promoted craving for cocaine, demonstrating a critical role of NAcSh cocaine-ensembles in incubation for cocaine craving. NAcSh cocaine-ensembles showed a specific increase of membrane excitability and a decrease of inward rectifying channels Kir2.1 currents after 30-day withdrawal. Overexpression of Kir2.1 in NAcSh cocaine-ensembles restored neuronal membrane excitability and suppressed cue-induced drug-seeking after 30-day withdrawal. Expression of dominant-negative Kir2.1 in NAcSh cocaine-ensembles enhanced neuronal membrane excitability and accelerated incubation of cocaine craving. Our results provide a cellular mechanism that the downregulation of Kir2.1 functions in NAcSh cocaine-ensembles induced by prolonged withdrawal mediates the enhancement of ensemble membrane excitability, leading to incubation of cocaine craving.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Fissura/fisiologia , Sinais (Psicologia) , Regulação para Baixo , Comportamento de Procura de Droga/fisiologia , Núcleo Accumbens/metabolismo , Autoadministração
14.
Psychopharmacology (Berl) ; 240(3): 575-594, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36464693

RESUMO

RATIONALE AND OBJECTIVES: The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS: We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS: Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS: Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.


Assuntos
Cocaína , Cocaína/farmacologia , Sinais (Psicologia) , Córtex Pré-Frontal/fisiologia , Neurônios , Recompensa , Extinção Psicológica/fisiologia , Comportamento de Procura de Droga/fisiologia , Autoadministração
15.
Life Sci ; 312: 121262, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470538

RESUMO

Because of the relapsing properties of psychostimulants such as methamphetamine (Meth), there is no established pharmacotherapy for Meth addiction. The orexinergic system is a promising target for treating psychostimulant use disorders and relapse. However, to the best of our knowledge, no investigation regarding the role of orexin receptors in the dentate gyrus (DG) region of the hippocampus has been conducted in the extinction and reinstatement of Meth-seeking behavior. Two stainless-steel guide cannulae were bilaterally implanted into the DG of the rats' brains. The unbiased conditioned place preference (CPP) procedure was conducted to induce Meth conditioning. Following the five days Meth injections (1 mg/kg; sc), animals received intra-DG microinjection of SB334867 or TCS OX2 29, as orexin 1 (OX1) or orexin 2 (OX2) receptor antagonists, respectively (without Meth administration) during extinction phase to elucidate the role of orexin receptors in the latency of the extinction period in the Meth-conditioned rats. To evaluate the role of orexin receptors in the DG region in the reinstatement of Meth-seeking behavior, the extinguished rats received SB334867 or TCS OX2 29 before injecting a priming dose of Meth (0.25 mg/kg; sc). The results indicated two distinct roles for the OX1 and OX2 receptors in the DG region. TCS OX2 29 attenuated the extinction latency, and SB334867 considerably reduced the reinstatement of Meth-seeking behavior in this region. Therefore, the DG region's orexinergic system might be a potential therapeutic target for psychostimulant use disorders.


Assuntos
Estimulantes do Sistema Nervoso Central , Giro Denteado , Comportamento de Procura de Droga , Metanfetamina , Receptores de Orexina , Animais , Ratos , Estimulantes do Sistema Nervoso Central/farmacologia , Giro Denteado/metabolismo , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Metanfetamina/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Orexinas , Ratos Wistar , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia
16.
Pharmacol Biochem Behav ; 219: 173447, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970339

RESUMO

Propofol, an intravenous short-acting anesthetic, has the potential to induce craving and relapse. Accumulated evidence demonstrates that extracellular signal-regulated kinase (ERK) plays an essential role in drug reward and relapse. In the previous study, we demonstrated that the ERK signaling pathways in the Nucleus accumbens (NAc) were involved in propofol reward. However, the role of the ERK signaling pathways in propofol relapse is still unknown. We first trained rats to self-administer propofol for 14 days, then evaluated propofol-seeking behavior of relapse induced by a contextual cues and conditioned cues after 14-day withdrawal. Meanwhile, MEK inhibitor U0126 was used to investigate the role of the ERK signal pathways in propofol-seeking behavior induced by contextual cues and conditioned cues. Results showed that the number of active nose-poke responses in propofol-seeking behavior induced by conditioned cues was much higher compared to contextual cues. U0126 (5.0 µg/side, Lateral Ventricle (LV)) pretreatment significantly decreased the active responses induced by conditioned cues, which was associated with a large decline in the expression of p-ERK in the NAc. Moreover, microinjectionofU0126 (2.0 µg/side) in the NAc also attenuated the active responses of propofol-seeking behavior. Additionally, microinjections with U0126 in the LV (5.0 µg/side) or NAc (2.0 µg/side) both failed to alter sucrose self-administration or locomotor activity of rats. Therefore, we conclude that ERK phosphorylation in the NAc maybe involved in propofol relapse.


Assuntos
Sinais (Psicologia) , Propofol , Animais , Condicionamento Operante , Comportamento de Procura de Droga/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Núcleo Accumbens/metabolismo , Propofol/metabolismo , Propofol/farmacologia , Ratos , Recidiva , Autoadministração , Transdução de Sinais
17.
J Neurosci ; 42(10): 2011-2024, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35031576

RESUMO

Repeated pairing of a drug with a neutral stimulus, such as a cue or context, leads to the attribution of the drug's reinforcing properties to that stimulus, and exposure to that stimulus in the absence of the drug can elicit drug-seeking. A principal role for the NAc in the response to drug-associated stimuli has been well documented. Direct and indirect pathway medium spiny neurons (dMSNs and iMSNs) have been shown to bidirectionally regulate cue-induced heroin-seeking in rats expressing addiction-like phenotypes, and a shift in NAc activity toward the direct pathway has been shown in mice following cocaine conditioned place preference (CPP). However, how NAc signaling guides heroin CPP, and whether heroin alters the balance of signaling between dMSNs and iMSNs, remains unknown. Moreover, the role of NAc dopamine signaling in heroin reinforcement is unclear. Here, we integrate fiber photometry for in vivo monitoring of dopamine and dMSN/iMSN calcium activity with a heroin CPP procedure in rats to begin to address these questions. We identify a sensitization-like response to heroin in the NAc, with prominent iMSN activity during initial heroin exposure and prominent dMSN activity following repeated heroin exposure. We demonstrate a ramp in dopamine activity, dMSN activation, and iMSN inactivation preceding entry into a heroin-paired context, and a decrease in dopamine activity, dMSN inactivation, and iMSN activation preceding exit from a heroin-paired context. Finally, we show that buprenorphine is sufficient to prevent the development of heroin CPP and reduce Fos activation in the NAc after conditioning. Together, these data support the hypothesis that an imbalance in NAc activity contributes to the development of drug-cue associations that can drive addiction processes.SIGNIFICANCE STATEMENT The attribution of the reinforcing effects of drugs to neutral stimuli (e.g., cues and contexts) contributes to the long-standing nature of addiction, as re-exposure to drug-associated stimuli can reinstate drug-seeking and -taking even after long periods of abstinence. The NAc has an established role in encoding the value of drug-associated stimuli, and dopamine release into the NAc is known to modulate the reinforcing effects of drugs, including heroin. Using fiber photometry, we show that entering a heroin-paired context is driven by dopamine signaling and NAc direct pathway activation, whereas exiting a heroin-paired context is driven by NAc indirect pathway activation. This study provides further insight into the role of NAc microcircuitry in encoding the reinforcing properties of heroin.


Assuntos
Cocaína , Núcleo Accumbens , Animais , Cocaína/farmacologia , Condicionamento Clássico , Condicionamento Operante , Dopamina/metabolismo , Comportamento de Procura de Droga/fisiologia , Heroína/farmacologia , Camundongos , Ratos
18.
Proc Natl Acad Sci U S A ; 119(45): e2209382119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36603188

RESUMO

Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.


Assuntos
Fissura , Metanfetamina , Animais , Camundongos , Encéfalo , Fissura/fisiologia , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Alimentos , Recidiva , Autoadministração
19.
Biol Psychiatry ; 91(12): 1051-1060, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922736

RESUMO

BACKGROUND: The mechanisms through which drug-cue-induced negative affective states are involved in relapse have not been defined. We tested the hypothesis that in individuals having developed a dorsolateral striatum (DLS)-dependent cue-controlled cocaine-seeking habit, the loss of the opportunity to enact the drug-seeking response during abstinence results in an urge to act that exacerbates relapse severity mediated by negative urgency. METHODS: Eighty-seven male Sprague Dawley rats were trained to seek cocaine under the influence of the conditioned reinforcing properties of drug-paired cues or not. We investigated whether the tendency to relapse depended on the aversive state of withdrawal or instead on the loss of opportunity to perform the ingrained drug-seeking response after periods of abstinence. The striatal locus of control over cocaine seeking at baseline and relapse was investigated using in situ hybridization of the cellular activity marker C-fos and assessment of the sensitivity of instrumental drug seeking to dopamine receptor blockade in the dorsomedial striatum-dependent goal-directed and DLS-dependent habit systems. RESULTS: The development of a DLS-dependent cue-controlled cocaine-seeking habit prior to abstinence resulted in a marked increase in drug seeking at relapse, which was not motivated by a cocaine withdrawal state and was no longer dependent on the DLS habit system. Instead, it reflected the emergence of negative urgency caused by the prevention of the performance of the habit during abstinence and underpinned by transient engagement of the goal-directed system. CONCLUSIONS: These results show that ingrained cue-controlled drug-seeking habits increase the pressure to relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração
20.
Addict Biol ; 27(1): e13106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672059

RESUMO

Infralimbic cortical (IL) manipulations indicate that this region mediates extinction learning and suppresses cocaine seeking following cocaine self-administration. However, little work has recorded IL activity during the inhibition of cocaine seeking due to the difficulty of determining precisely when cocaine-seeking behaviour is inhibited within a cocaine-seeking session. The present study used in vivo electrophysiology to examine IL activity across extinction as well as during cocaine self-administration and reinstatement. Sprague-Dawley rats underwent 6-h access cocaine self-administration in which the response lever was available during discrete signalled trials, a procedure which allowed for the comparison between epochs of cocaine seeking versus the inhibition thereof. Subsequently, rats underwent extinction and cocaine-primed reinstatement using the same procedure. Results indicate that theta rhythms (4-10 Hz) dominated IL local-field potential (LFP) activity during all experimental stages. During extinction, theta power fluctuated significantly surrounding the lever press and was lower when rats engaged in cocaine seeking versus when they withheld from doing so. These patterns of oscillatory activity differed from self-administration and reinstatement stages. Single-unit analyses indicate heterogeneity of IL unit responses, supporting the idea that multiple neuronal subpopulations exist within the IL and promote the expression of different and even opposing cocaine-seeking behaviours. Together, these results are consistent with the idea that aggregate synaptic and single-unit activity in the IL represent the engagement of the IL in action monitoring to promote adaptive behaviour in accordance with task contingencies and reveal critical insights into the relationship between IL activity and the inhibition of cocaine seeking.


Assuntos
Encéfalo/fisiologia , Cocaína/farmacologia , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...